
SuperLU : High-performance Library to Solve
Sparse Linear Systems

Xiaoye S. Li

xiaoye@nersc.gov

LBNL/NERSC

WORKSHOP ON THE ACTS TOOLKIT:

Solving Problems in Science and Engineering

October 10-13, 2001

Page 1

Outline

� Essential components of the sparse direct solvers

� The role of supernode in SuperLU

� Sequential and shared memory algorithms

� A Scalable algorithm for MPPs

� Summary

Page 2

What is SuperLU ?

� Solve large, sparse linear system
Ax = b

(Example: A of size 105-by-105, only 10 � 100 nonzeros per row.)

� Algorithm: Gaussian elimination (LU factorization, A = LU), followed by

lower/upper triangular solutions.

{ Store only nonzeros and perform operations only on the nonzeros.

� EÆcient implementation for high-performance cache-based and parallel

computers;

Software highly portable on many platforms.

Page 3

Software Status

SuperLU SuperLU MT SuperLU DIST

Platform Uniprocessor SMP Message-passing

Language C C + POSIX thread C + MPI

(all callable from Fortran)

Data type real/complex, real, real/complex,

single/double double double

� Source code, Users' Guide, and papers available:

http://www.nersc.gov/�xiaoye/SuperLU

Page 4

Direct Solvers for Sparse Linear Systems

� Gaussian elimination (LU , LLT , LDLT factorizations), followed by

lower/upper triangular solutions.

{ Dense: PA = LU permutation for stability

{ Sparse: PrAP
T
c = LU permutations for stability and sparsity of L, U

� Distinct steps for sparse matrices.

1. Order equations & variables to minimize �ll in the L, U factors

{ heuristics based on combinatorics

2. Symbolic factorization

{ set up data structures and allocate memory for L, U

3. Numerical factorization: usually dominates total time

{ how to pivot?

4. Triangular solves: usually < 5% time

Page 5

Sparse GE : Fill-in

� Original zero entry aij becomes nonzero in L or U

Natural Order: nonzeros = 233

0 5 10 15 20 25

0

5

10

15

20

25

nonzeros = 233

Factors L+U

Min. Degree Order: nonzeros = 207

0 5 10 15 20 25

0

5

10

15

20

25

nonzeros = 207

Factors L+U using min−degree ordering

Page 6

How to Pivot?

� Goal of pivoting: control element growth in L & U for numerical stability

� Example: partial pivoting: PA = LU (GEPP).

{ used in sequential SuperLU and SuperLU MT

� Partial pivoting implies

{ dynamic change of �ll patterns of L & U

=) interleave symbolic & numerical factorizations

{ lots of communication with small messages

=) slow on parallel machines with high latency

� Static pivoting used in SuperLU DIST (GESP).

{ pivot before numerical factorization so data structures static

{ accommodate possible pivot growth during factorization without changing

data structures

=) symbolic & numerical factorizations decoupled

Page 7

Ordering for Sparse Cholesky

� Local greedy heuristics.
{Minimum degree [Tinney/Walker '67, George/Liu '79, Liu '85,

Amestoy/Davis/Du� '94, Ashcraft '95, Du�/Reid '95]

{Minimum de�ciency (�ll-in) [Tinney/Walker '67, Ng/Raghavan '97]

� Global graph partitioning heuristics.

{ Nested dissection [George '73]

{Multilevel schemes [Hendrickson/Leland '94, Karypis/Kumar '95]

{ Spectral bisection [Simon et al. '90-'95]

{ Geometric and spectral bisection [Chan/Gilbert/Teng '94]

� Hybrid of the above two [Ashcraft/Liu '96, Hendrickson/Rothberg'97].

Page 8

Ordering for Unsymmetric LU with Partial Pivoting

� Symmetric ordering for Cholesky of ATA.

{ If RTR = ATA and PA = LU , then for any row permutation P ,

struct(L + U) � struct(RT + R). [George/Ng '87]

{Making R sparse tends to make L + U sparse.

{ Strategy:

1. Find a good symmetric ordering Pc from ATA

2. Apply Pc to columns of A : �A = AP T
c

�AT �A = (AP T
c)

T (AP T
c) = Pc(A

TA)P T
c

� Column minimum degree based solely on A.

{Matlab; Larimore/Davis/Gilbert/Ng '98

�Markowitz { unsymmetric variant of minimum degree.

{ Du�/Erisman/Reid '86 book

{ usually performed together with numeric factorization

Page 9

Ordering for Unsymmetric LU with Diagonal Pivoting

� Symmetric ordering for Cholesky of AT + A.

{ If RTR = AT + A and A = LU , then struct(L + U) � struct(RT +R).

{Making R sparse tends to make L + U sparse.

{ Strategy:

1. Find a good symmetric ordering Pc from AT + A

2. Apply Pc to both rows and columns of A : �A = PcAP
T
c

Struct(�A) = Struct(PcAP
T
c) � Struct(Pc(A

T + A)P T
c)

Page 10

Ordering Comparison

GEPP, COLAMD GESP, AMD(AT + A)

Matrix Order Fill (106) Time Fill (106) Time

AF23560 23560 12.1 30.7 11.7 23.6

BRAMLEY1 17933 11.9 34.0 5.5 8.0

EX11 16614 18.9 82.5 11.4 22.0

FIDAPM11 22294 26.9 166.3 26.5 112.6

GOODWIN 7320 5.6 15.9 1.1 3.8

MEMPLUS 17758 4.4 36.4 0.14 1.4

ONETONE1 36057 4.8 22.2 3.1 19.1

WANG4 26068 26.2 197.2 10.5 31.4

Page 11

Ordering Interface in SuperLU

� SuperLU distribution contains routines:

{ Form ATA

{ Form AT + A

{MMD (Multiple Minimum Degree, courtesy of Joseph Liu)

{ COLAMD : http://www.netlib.org/linalg/colamd/

� You may use any other { Just input a permutation vector to SuperLU

For example:

{ (Par)METIS : http://www-users.cs.umn.edu/�karypis/metis/

{ Chaco

{ � � �

Page 12

Symbolic Factorization

� Cholesky [George/Liu '81 book]

{ Use elimination graph of L and its transitive reduction (elimination tree)

{ Complexity linear in output: O(nnz(L))

� LU
{ Use elimination graphs of L, U and their transitive reductions (elimination

DAGs) [Tarjan/Rose '78, Gilbert/Liu '93, Gilbert '94]

{ Improved by symmetric structure pruning [Eisenstat/Liu '92]

{ Improved by supernodes

{ Complexity greater than nnz(L + U), yet much smaller than flops(LU)

Page 13

Numerical Factorization

� Usually the most expensive step

� Recent improvements for

{ Superscalar processor and hierarchical memory system

{Multiple processors

Page 14

Unsymmetric Supernode [Eisenstat/Gilbert/Liu '93]

� Exploit dense submatrices in the L & U factors of PA = LU

9

2515

9

87

6

9

87

6

2515

9

87

6

87

6

Supernode [6 : 9]
U

L
15

25

6

7

8

9

6 7 8

�Why are supernodes good?

{ Permit use of Level 3 BLAS

{ Reduce ineÆcient indirect addressing (scatter/gather)

{ Reduce symbolic time by traversing a coarser graph

Page 15

Supernode-Panel factorization (Left-looking)

for column j = 1 to n step w do

F (: ; j: j + w � 1) = A(: ; j: j + w � 1);

(1) Symbolic factorization [Gilbert/Peierls '88, Gilbert/Li '94]

� Determine which supernodes update F (: ; j: j + w � 1)

(2) Numeric update

for each updating supernode (r: s) < j in order do

� Triangular solve

U(r : s; j : j + w � 1) =

L(r : s; r : s)nF (r : s; j : j + w � 1);

� Matrix update

F (s + 1 : n; j : j + w � 1) � =

L(s + 1 : n; r : s) � U(r : s; j : j + w � 1);

end for;

(3) Inner factorization for F (j : n; j + w � 1)

� Row pivoting for each column;

� Detect supernode boundary;

� Symmetric structure pruning; [Eisenstat/Liu '92]

end for;

W

t

t

b

b

r s

j j+w-1

U

L

JJ

JJ

Lj:n J

PanelSupernode

DONE ACTIVE

Page 16

Parallelism: Column Elimination Tree [Gilbert/Ng '93]

� Each column of the matrix has one vertex in the tree.

� Exhibits column dependencies during the elimination.

1. If column j updates column k, then j is a descendant of k;

2. Conversely, if j is a descendant of k, column j may or may not update

column k (depending on numerical pivoting).

�More accurate update edges are detected on the y.

� Computing elimination tree takes time almost linear in nnz(A).

A =

0
BBBBBBBBBBBBBBBBBBB@

1 � � �
2 � �
� 3

� 4 �
5 �

� � 6

1
CCCCCCCCCCCCCCCCCCCA

6

5= k

1

3 4

2 = j

Page 17

Shared Memory Scheduling Loop [Demmel/Gilbert/Li '97]

Shared task queue initialized with leaves;

while (there are more panels) do

panel := GetTask (queue);

(1) panel symbolic factor(panel);

� skip all BUSY descendant supernodes;

(2) panel numeric factor(panel);

� updates from all DONE supernodes;

� wait for BUSY supernodes to become DONE;

(3) inner factorization(panel);

end while; BUSY

P1

P2

DONE

Page 18

SuperLU DIST { GESP Algorithm [Li/Demmel '98]

1. Row/column equilibration: A Dr � A �Dc

� the largest entry of each row/column is 1

2. Permute rows to maximize diagonal: A Pr � A
� weighted bipartite matching algorithm [Du�/Koster '98]

3. Permute rows/columns to maximize sparsity & parallelism: A Pc � A � P T
c

�minimum degree, nested dissection ... on AT + A

4. Factorize A = LU in parallel: 2D irregular block cyclic layout

� increase tiny pivots aii to
p
"jjAjj

5. Triangular solves in parallel

� iterative re�nement if needed

Page 19

Distributed Data Structures: 2D Block Cyclic Layout

block number

block numberblock numberblock numberblock numberblock numberblock numberblock number

...

...

block numberblock number

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�
�
�
�

�
�
�
�

�
�
�

�
�
�

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Process Mesh
0 1 2

5

L

1 2 0 1 2 00

3 4 5

U
4 5

210 0 1 2

3 4 5 3 4 5

0 1 2 0 21

3 4 5 3 4

0 1 2 0 1 2 0

0

0

3

3

3

Global Matrix

3

5

index

Storage of block column of L

of blocks

nzval

row subscripts

i1
i2

of full rows

row subscripts

i1
i2

of full rows

LDA of nzval

3 4
Process MeshProcess Mesh

Page 20

High Performance

� Sequential SuperLU
{ Enhance data reuse in memory hierarchy by working with supernodes in the

sparse factored matrices.

{ Achieved up to 40% of the theoretical Megaop rate on workstations.

� SuperLU MT

{ Exploit both coarse and �ne grain parallelism; Employ dynamic scheduling

to minimize parallel runtime.

{ Achieved up to 10 fold speedup on medium-size SMPs.

� SuperLU DIST

{ Enhance scalability by new static pivoting and matrix distribution methods.

{ Achieved up to 100 fold speedup, and 11 Gigaop rate on 512-PE T3E.

Page 21

Example Matrices

Minimum degree ordering on AT + A

nnz(L + U) Flops

Discipline Symm Order nnz(A) (10
6
) (10

9
)

BBMAT uid ow 0.54 38,744 1,771,722 40.2 31.2

ECL32 device sim. 0.93 51,993 380,415 42.7 68.4

TWOTONE circuit sim. 0.43 120,750 1,224,224 11.9 8.0

4 16 64 128 256 512
0

20

40

60

80

100

120

T3E Processors

S
e
co

n
d
s

Factorization Time

BBMAT
ECL32
TWOTONE

4 16 64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5

T3E Processors

S
e
co

n
d
s

Triangular Solutions Time

BBMAT
ECL32
TWOTONE

Page 22

Scalability on T3E

3D cubic grids, 11 points stencil.

Grid size increases with number of processors, such that ops per processor

roughly constant: 29, 33, 36, 41, 46, 51, 57, 64.

1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80

90

100

T3E Processors

S
e
co

n
d
s

Factor
Solves

Page 23

Quantum Chemistry Application Using SuperLU DIST

� Study quantum scattering of 3 charged particles.

(Baertschy, Recigno, Issacs, Li & McCurdy, LBNL/LLNL)

� Complex, unsymmetric linear systems, largest of order 8 millions.

� SuperLU DIST is used to build block preconditioner in a CGS solver.

� Preconditioners
{ of order 209,764, in 2 minutes, on 16 PE Cray T3E

{ of order 2 million, in 10 minutes, on 64 PE IBM SP

� These represent the �rst \exact" solution to a quantum mechanical 3-body

Coulomb problem.

� The historic result was featured on the cover of Science, Dec. 24, 1999.

Page 24

Summary { Content of the SuperLU Package

� LAPACK-style interface
{ Simple and expert driver routines

{ Computational routines

{ Comprehensive testing routines

� Functionalities
{Minimum degree ordering [MMD, Liu '85] applied to ATA or A + AT

{ User-input to control pivoting

� pre-assigned row and/or column permutations

� partial pivoting with threshold

{ Solving transposed system

{ Equilibration

{ Condition number estimation

{ Iterative re�nement to improve accuracy

{ Componentwise error bounds [Skeel '79, Arioli/Demmel/Du� '89]

Page 25

